Introduction
Engineered Cementitious Composite (ECC) or Strain Hardening Cement-based Composites (SHCC) is a particular type of concrete reinforced with specially selected short random fibers. The strain capacity of such composite is in the range of 3–7%, compared to 0.01% for ordinary Portland cement (OPC). Bendable concrete acts like ductile metal when compared to the brittle nature of OPC cement. As a result of adverse effects on fiber dispersion and overall performance, the coarse aggregates are not used in ECC. Different type of fibers is implemented to impart the tensile strength in ECC. Some fibers include Poly Vinyl Alcohol, Polypropylene fiber, and also natural fibers. ECC shows ductility property in the hardened state, and flexible property in the new state makes ECC applicable to a wide range of construction applications. This report presents a review of ECC durability studies in the literature, with detailed discussions on ECC high-temperature resistance, permeability resistance, and shrinkage resistance. The use of engineered cementitious composites (ECCs) has gained wide attention considering their properties, such as high tensile strength and elasticity values. However, the required methods for direct measurement of tensile strength are not developed adequately.