Awarded as the best online publication by CIDC

Prestress Engineering

Analysis and design of prestressed concrete box girder bridge

Miss.P.R. Bhivgade

Abstract:– Bridge construction today has achieved a worldwide level of importance. Bridges are the key elements in any road network Use of box girder is gaining popularity in bridge engineering fraternity because of its better stability, serviceability, economy, aesthetic appearance and structural efficiency. The structural behavior of box girder is complicated, which is difficult to analyze in its actual conditions by conventional methods. In present study a two lane simply supported Box Girder Bridge made up of prestressed concrete which is analysis for moving loads as per Indian Road Congress (IRC:6) recommendations, Prestressed Code (IS: 1343) and also as per IRC: 18 specifications. The analyzed of box girder using SAP 2000 14 Bridge Wizard and prestressed with parabolic tendons in which utilize full section. The various span/ depth ratio considered to get the proportioning depth at which stresses criteria and deflection criteria get satisfied.

Keywords: Concrete Box Girder Bridge, Prestress Force, Eccentricity, Prestress Losses, Reinforcement, Flexure strength, shear strength, SAP Model.

Read More

Design Of Prestressed Shell type Strucutre using Finite Element Method

Mr.Abhinandan R.Gupta
Asst.Prof, Dept. Of Civil Engg.

With the urge for sustainable, durable and economical construction various methods for designing, developing and constructing structures right from Class I structures like Important service and community structures – Power plants, Reservoirs, Health care centers, Airports to ordinary structures have been developed rapidly in the last few decades.

Along with these construction techniques the reliability of present or proposed structure is determined with various analysis and designing methods for parameters under consideration. One such reliable and effective method is Finite element Method. FEM even if complex and hard for manual analysis but is one of the most efficient method for software programming.FEM method works effectively even for complex structure with efficient results or outcomes.
Read More

Economics of R.C.C. Water tank Resting over Firm Ground vis-a-vis Pre-stressed Concrete Water Tank Resting over Firm Ground


Prof A. R. Mundhada

Water tanks are used to store water and are designed as crack free structures, to eliminate any leakage. In this paper design of two types of circular water tank resting on ground is presented. Both reinforced concrete (RC) and prestressed concrete (PSC) alternatives are considered in the design and are compared considering the total cost of the tank. These water tank are subjected to the same type of capacity and dimensions. As an objective function with the properties of tank that are tank capacity, width &length etc.

A computer program has been developed for solving numerical examples using the Indian std. Indian Standard Code 456-2000, IS-3370-I,II,III,IV & IS 1343-1980. The paper gives idea for safe design with minimum cost of the tank and give the designer the relationship curve between design variable thus design of tank can be more economical ,reliable and simple. The paper helps in understanding the design philosophy for the safe and economical design of water tank.

Rigid based water tank, RCC water tank, Prestressed Concrete, design, details, minimum total cost, tank capacity
Read More

What is stress corrosion of prestressing steel?

Stress corrosion is the crystalline cracking of metals under tensile stresses in the presence of corrosive agents. The conditions for stress corrosion to occur are that the steel is subjected to tensile stresses arising from external loading or internally induced stress (e.g. prestressing).

Read More

In prestressing work, if more than one wire or strand is included in the same duct, why should all wires/strands be stressed at the same time?

If wires/strands are stressed individually inside the same duct, then those stressed strand/wires will bear against those unstressed ones and trap them. Therefore, the friction of the trapped wires is high and is undesirable.

Read More

What are the functions of grout inside tendon ducts?

Grout in prestressing works serves the following purposes:

(i) Protect the tendon against corrosion.

(ii) Improve the ultimate capacity of tendon.

Read More

Why is spalling reinforcement needed for prestressing works in anchor blocks?

Reinforcement of anchor blocks in prestressing works generally consists of bursting reinforcement, equilibrium reinforcement and spalling reinforcement. Bursting reinforcement is used where tensile stresses are induced during prestressing operation and the maximum bursting stress occurs where the stress trajectories are concave towards the line of action of the load. Reinforcement is needed to resist these lateral tensile forces. For equilibrium reinforcement, it is required where there are several anchorages in which prestressing loads are applied sequentially.

Read More

What are the three major types of reinforcement used in prestressing?

(i) Spalling reinforcement
Spalling stresses are established behind the loaded area of anchor blocks and this causes breaking away of surface concrete. These stresses are induced by strain incompatibility with Poisson’s effects or by the shape of stress trajectories.

(ii) Equilibrium reinforcement
Equilibrium reinforcement is required where there are several anchorages in which prestressing loads are applied sequentially.

Read More

Under what situation shall engineers use jacking at one end only and from both ends in prestressing work?

During prestressing operation at one end, frictional losses will occur and the prestressing force decreases along the length of tendon until reaching the other end. These frictional losses include the friction induced due to a change of curvature of tendon duct and also the wobble effect due to deviation of duct alignment from the centerline. Therefore, the prestress force in the mid-span or at the other end will be greatly reduced in case the frictional loss is high. Consequently, prestressing, from both ends for a single span i.e. prestressing one-half of total tendons at one end and the remaining half at the other end is carried out to enable a even distribution and to provide symmetry of prestress force along the structure.

Read More

What are parasitic forces for prestressing?

In statically determinate structures, prestressing forces would cause the concrete structures to bend upwards. Hence, precambering is normally carried out to counteract such effect and make it more pleasant in appearance.

Read More

Ask a question