Awarded as the best online publication by CIDC

Project Reports

Use of Aluminium In Building Construction

By Prof. Madhuri K. Rathi, Mr.Ajinkya K. Patil
Amrutvahini College of Engineering, Sangamner

Abstract
The aluminium element was discovered 200 years ago. After an initial period of technological development, aluminium alloys were used in many structural applications, including the civil engineering field. Aluminium is the second most widely specified metal in building after steel, and is used in all sectors from commercial building to domestic dwelling.

This paper contains complete overview of use of aluminium in building construction. How it is beneficial in modern age building construction. This paper also contains the properties, advantages. Some question arises that whether aluminium is sustainable, fabricated for fast track, requires maintenance, are explained in detail in this paper.
Read More

Breaking Through The Barriers To Sustainable Building

Insights from Building Professionals on Government Initiatives to Promote Environmentally Sound Practices
By Sandeep Singh

ABSTRACT
75% of the world’s energy is consumed in cities. 40% of the world’s energy is consumed in buildings. The most interesting potential for CO2-reduction in cities from an economical point of view lays in the modernization of the building’s infrastructure. Making existing and new buildings to Green Buildings is one of the most effective levers to meet the challenges of CO2 reduction in cities. The objective of the presentation is to give a short overview of the frame conditions, the existing labels and – most important – show success stories.

Read More

Analysis and design of prestressed concrete box girder bridge

By
Miss.P.R. Bhivgade

Abstract:– Bridge construction today has achieved a worldwide level of importance. Bridges are the key elements in any road network Use of box girder is gaining popularity in bridge engineering fraternity because of its better stability, serviceability, economy, aesthetic appearance and structural efficiency. The structural behavior of box girder is complicated, which is difficult to analyze in its actual conditions by conventional methods. In present study a two lane simply supported Box Girder Bridge made up of prestressed concrete which is analysis for moving loads as per Indian Road Congress (IRC:6) recommendations, Prestressed Code (IS: 1343) and also as per IRC: 18 specifications. The analyzed of box girder using SAP 2000 14 Bridge Wizard and prestressed with parabolic tendons in which utilize full section. The various span/ depth ratio considered to get the proportioning depth at which stresses criteria and deflection criteria get satisfied.

Keywords: Concrete Box Girder Bridge, Prestress Force, Eccentricity, Prestress Losses, Reinforcement, Flexure strength, shear strength, SAP Model.

Read More

Mitigation of Soil Erosion with Jute Geotextile Aided by Vegetation Cover

Mitigation of Soil Erosion with Jute Geotextile Aided by Vegetation Cover: Optimization of an Integrated Tactic for Sustainable Soil Conservation System (SSCS)
By Md Minhaz Mahmud, Nazmul Huda Chowdhury, Md Manjur Elahi, Md Hasanur Rashid, Md Kamrul Hasan
Khulna University of Engineering & Technology(KUET), Khulna, Bangladesh

Abstract
Degradation of soil considered as one of the foremost vulnerability and global threats nowadays not only for agricultural production and food security, but also for the environmental challenges related to watershed protection, disaster management, bio-diversity conservation, sustainable management of natural resources and climate change, furthermore, complication in Civil engineering. In Bangladesh where arable lands are less than necessary, certainly susceptible to severe erosion due to rainfall and flood, particularly when poor agricultural methods are used or preventive measures are not taken. Implementation of Jute Geotextiles (JGT) aided by native vegetation cover was investigated intended to design a sustainable and low cost tactic at Beel Dakatia through the entire year of 2009. Prime consequences were that erosion, moisture content and runoff are likely to be considerably impacted by rainfall intensity, soil surface slope; additionally, combined presence of JGT and vegetation cover reduced rate of erosion about 95% and runoff about 70% with respect to bare plots. Hence, play noteworthy role to conserve soil and stabilize the slope as well and mitigate susceptibility to degradation.

Keywords : Soil Protection, Jute Geotextiles (JGT), Watershed Management, Renewable Natural Resource, Disaster Management, Soil Strength.
Read More

Structural Design of a Bus Terminal

By
MD Anamul Hasan

Abstract
Bus-terminal is an essential component of urban transport facilities which defines the beginning (origin) or end (terminating) of the line for the transportation system. It normally requires a size-able land in a strategic part of an urban area. A well planned or managed bus-terminal will act as catalyst to the social and economic development of the surrounding areas. On the other hand, bus-terminal is an asset to an area as it may act as catalyst to economic and social development of the surrounding areas. However, poorly planned and sited terminal for buses may generate traffic problems as well as deteriorating the quality of life of the affected surroundings. This project focuses mainly the structural design of whole bus terminal. As with engineering and operational aspects of terminal facilities the focus would be on the design to fulfill traffic capacity requirement and operational efficiency to operators and passengers. The proposed far side terminating bas terminal model which located outside city centre may have added advantages such as reducing unnecessary congestion and improving the environment.

Objectives: This project have following main objectives:
Conducting research on the existing bus terminal of a city and proposing a new model of bus
terminal according to findings
Read More

Visual Inspection of Concrete Structure

By
Kaushal Kishore
Materials Engineer, Roorkee

Visual inspection is one of the most versatile and powerful of the NDT methods, and it is typically one of the first steps in the evaluation of a concrete structure. Visual inspection can provide a wealth of information that may lead to positive identification of the cause of observed distress. However, its effectiveness depends on the knowledge and experience of the investigator. Broad knowledge in structural engineering, concrete materials, and construction methods is needed to extract the most information from visual inspection.

Before performing a detailed visual inspection, the investigator should develop and follow a definite plan to maximize the quality of the record data. Visual inspection has the obvious limitation that only visible surface can be inspected. Internal defects go unnoticed and no quantitative information is obtained about the properties of the concrete. For these reasons, a visual inspection is usually supplemented by one or more of the other NDT methods, such as by concrete test hammer, ultrasonic concrete tester and partial destructive testing by drilling cores and testing them for compressive strength.
Read More

Properties Of Green Lightweight Aggregate Concrete

By
Ali Shokati Sayyad, MS Student Of Islamic Azad University Chaloos Branch Kooros
Nekoofar Asisatant Professor Of Islamic Azad University Chaloos Branch

Abstract
With increasing concern over the excessive exploitation of natural aggregates, synthetic lightweight aggregate produced from environmental waste is a viable new source of structural aggregate material. The uses of structural grade lightweight concrete reduce considerably the self-load of a structure and permit larger precast units to be handled. In this paper, the mechanical properties of a structural grade lightweight aggregate made with fly ash and clay will be presented. The findings indicated that water absorption of the green aggregate is large but the crushing strength of the resulting concrete can be high. The 28-day cube compressive strength of the resulting lightweight aggregate concrete with density of 1590 kg/m3 and respective strength of 34 MPa. Experience of utilizing the green lightweight aggregate concrete in prefabrication of concrete elements is also discussed.
Read More

Waterproofing of Roof With Discarded Tyre Rubber Crumb

By
Kaushal Kishore, Materials Engineer, Roorkee

INTRODUCTION :
About one crore 10 lakhs all types of new vehicles are added each year to the Indian roads. The increase of about three crores discarded tyres each year pose a potential threat to the environment. Tyres are recycle yet significant number are added to existing tyre dumps or landfills. The generation of waste tyres far exceeds than now being recycle. Waste rubber tyres cause serious environment problems all over the world. This accumulated waste materials can be used in Civil Engineering Construction.

Early studies on the use of worn out tyres in asphalt mixes were very promising, not much attention has been given to the use of rubber from scrap tyres in portland cement concrete. So far no research has been done in the use of rubber crumb for RCC and RB roof slab water proofing.
Read More

Polymer-Modified Mortars And Concrete Mix Design

By
Kaushal Kishore
Materials Engineer, Roorkee

Polymer-modified Concrete (PMC) has also been called polymer-Portland cement-concrete (PPCC) and latex-modified concrete (LMC). It is defined as Portland cement and aggregate combined at the time of mixing with organic polymers that are dispersed or redispersed in water. This dispersion is called latex; the organic polymer is a substance composed of thousands of simple molecules combined into large molecules. The simple molecules are known as monomers, and the reaction that combine them is called polymerization. The polymer may be a homopolymer if it is made by the polymerization of one monomer, or a copolymer when two or more monomers are polymerized.

Of various polymer-modified mortar and concrete, latex-modified mortar and concrete have superior properties, such as high tensile and flexural strength, excellent adhesion, high waterproofness, high abrasion resistance and good chemical resistance, to ordinary cement mortar and concrete. Accordingly they are widely used in many specialized applications in which ordinary cement mortar and concrete have been employed to a lesser extent till now. In these applications, the latex-modified mortars are widely used rather than the latex-modified concrete from the viewpoint of a balance between their performance and cost.
Read More

Quality Control Of Construction Testing Of Concrete Cubes

By Kaushal Kishore
Materials Engineer, Roorkee

The acceptance criteria of quality of concrete is laid down in IS:456-2000. The criteria is mandatory and various provisions of the code have to be complied before the quality of concrete is accepted. In all the cases, the 28-days compressive strength shall alone be the criterion for acceptance or rejection of the concrete. In order to get a relatively quicker idea of the quality of concrete, optional test for 7 days compressive strength of concrete be carried out.

6 Cubes of 150 x 150 x 150 mm size (the nominal size of aggregate does not exceed 38 mm) shall be cast, 3 for 7-days testing and 3 for 28-days testing. A set of
3 cubes (specimen) average strength will be a sample. The individual variation of a set of 3 cubes should not be more than ± 15% of the average. If more, the test result of the sample is invalid.

Note:- For aggregates larger than 38 mm, bigger than 150 mm moulds are to be used. See IS:10086-1982
Read More

Ask a question