Awarded as the best online publication by CIDC

Soil Engineering

What are the rationales of Observational Method in geotechnical works?

The idea of Observational Method was first discussed by Peck in the Rankine Lecture in 1969. The Observational Method is commonly adopted in geotechnical works in construction phase, though it is also feasible in design stage.

In essence, in the conforming design by engineers during planning stage, the design is usually based on over-conservative approach or most unfavourable conditions owing to a lack of precise and actual site information. During subsequent construction, with precise site information and condition available the Observational Method is adopted in which the original design is revised based on most probable conditions with instrumentation monitoring. If the monitoring results show that performance of the revised design approaches the limit of acceptable level of risk, then it shall be reverted to planned modification which is based on most unfavourable conditions and hence the level of risk is lowered back to the original design. Otherwise, the revised design shall continue and this results in cost reduction without comprising safety of works.

Advertisements

However, care should be taken in implementing Observational Method when rapid deterioration of the site may occur so that there is insufficient time for carrying out the planned modification. For instance, rapid deterioration can result from development of high pore water pressure in heavy rainfall or burst watermain.

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

What are the measures to reduce the effects of soil liquefaction?

To reduce the effect of soil liquefaction, it is intended to reduce the pore water pressure induced during earthquake shaking. This can be achieved by providing better drainage in soils (e.g. wick drains, sand drains etc. ) and densification of soils (e.g. vibroflotation, dynamic compaction etc.).

Advertisements

Liquefaction hazards can be reduced by improving the drainage ability of the soil. If the pore water within the soil can drain freely, the build-up of excess pore water pressure would be reduced accordingly.

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Does liquefaction occur to sand only?

In liquefaction, the pore water pressure builds up steadily and eventually approaches a value equal to the confining pressure. In an earthquake, however, there is not enough time for the water in the pores of the soil to be squeezed out. Instead, the water is trapped and this avoids the soil particles from moving closer together. Consequently, this results in an increase in water pressure which reduces the contact forces between the individual soil particles, thereby softening and weakening the soil. Eventually, soils particles lose contact with each other and behave like a liquid.

Advertisements

Hence, the type of soils which is susceptible to liquefaction is the one like sand whose resistance to deformation is mobilized by frictional forces between particles under confining pressure. In case the soil is fine grained, cohesive forces tends to develop between these fine particles and it is difficult to separate them. Therefore, sand with increasing content of fines tends to increase its resistance to liquefaction.

The consequence of liquefaction is that the subsequent settlements after liquefaction may damage the overlying structures. Moreover, for sloping ground lateral flow may result which is undesirable. Liquefaction only occurs to saturated soils.

Advertisements

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Can sheets or geo-grids replace reinforcing elements in soil nails?

Where soil nails are intended for improving the slope stability of existing ground, sheets or geo-grids can hardly replace reinforcing elements in soil nails. Practically speaking, the reinforcing of existing slopes limits the types of reinforcing elements to be adopted. For instance, sheets or geo-grids do not have sufficient bending stiffness to be inserted into exiting slope and they are usually placed in soils as soil layers are built up. The reinforcing element of exiting ground requires steel bars with good tensile strength.

Advertisements

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Can grout be utilized in providing tensile resistance of soil nails?

The passive nature of soils nails requires a small movement for the nails to take up loading. During this process, it is understood that the grout annulus around the nail would crack to allow for these small displacements.

Therefore, the tensile capacity of grout is normally ignored in design and only compressive capacity might be considered.

Advertisements

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Ask a question