Awarded as the best online publication by CIDC

# Composite Construction

In a composite construction, a concrete slab and steel beams act together to resist the load acting on beam and thus the slab acts as a cover plate. Due to this we use a lighter steel section in composite construction

What are the Two Methods of Composite Construction in Buildings?
Method 1. In the first method, we cast the steel beam entirely in the concretion i.e steel beam encased in the concrete. The steel concrete bond is the main reason for composite action. The beam is laterally braced therefore the allowable stress in the flanges is 0.66Fy, where Fy is the yield strength, ksi (MPa), of the steel.

We Assume that the full dead load is carried by steel where as the live load is carried by the composite section. Thus, the maximum unit stress, ksi (MPa), in steel is
fs = MD/Ss + ML/Str <=0.66Fy
where
MD = Dead load moment, in-kip (kN-mm)
M L = Live load moment, in-kip (kN-mm)
Ss = Section modulus of steel beam in inch3(mm3)
Str = Section modulus of transformed composite section in inch3(mm3)

AISC also allows us to assume that both dead load and live load is carried by steel beam. In that case a higher stress in the steel is calculated as
fs = (MD + ML)/ Ss<=0.76Fy

Method 2
In this method, shear connectors are used to connect the steel beam with the concrete slab. Ultimate load is the main factor considered in this method. The maximum stress in the bottom flange is
fs = (MD + ML)/ Str<=0.66Fy

To find the transformed composite section, we have to bring in the neutral axis into consideration. We consider the concrete above the neutral axis as an equivalent steel area by dividing the concrete area by the ratio of modulus of elasticity of steel to that of the concrete( n).

A very small portion of concrete slab is considered effective in resisting the compressive flexural stresses while determining the transformed section. As per standards, the width of slab on either side of the effective beam centerline should not exceed any of the following conditions:

1. One-eighth of the beam span between centers of supports
2. Half the distance to the centerline of the adjacent beam
3. The distance from beam centerline to edge of slab

### Kanwarjot Singh

Kanwarjot Singh is the founder of Civil Engineering Portal, a leading civil engineering website which has been awarded as the best online publication by CIDC. He did his BE civil from Thapar University, Patiala and has been working on this website with his team of Civil Engineers.

If you have a query, you can ask a question here.

## 5 comments on "Composite Construction"

Sarika says:

A metal building just may be in your future as a home or business owner. With the limited amount of both non-renewable and renewable resources on the planet, you might not have ever considered a metal building. They have a stereotype of being boxy, practical and utilitarian-in short, kind of unattractive.

One of the main reasons that the metal building construction field is growing is that steel is a durable, easy to produce and inexpensive product. It is stronger than any other building product pound for pound. Much of the steel used in any given metal building you might see today is made from recycled material-and over 50 percent of it can be recycled again for use in another building. Therefore, metal is a “green” building material-a concept that is increasing in popularity with both builders and consumers. It has the ability to withstand some of the most damaging weather conditions as well as being fire resistant-insurance companies typically love it.

ER. vipin kumar says:

Can you help me for finding out the painting co eficent for steel structural members- IS Code no if any.please help me !!

vivek says:

i required more study material about composite construction

sumitra says:

can anybody give me some examples of steel-concrete composite construction in INDIA?

chandresh choudhary says:

can anybody plz suggest me a book on steel concrete camposite
construction according to indian standard code