Awarded as the best online publication by CIDC
In the design of marine piles of steel tubular piles with concrete infill, loads from pier deck are taken up by steel tubular piles before the occurrence of corrosion of steel piles above seabed. In fact, it is assumed that steel piles above seabed level will all be corroded after a certain year. The load transfer mechanism after complete corrosion of steel pile above seabed is as follows: loads from pier deck are taken up by concrete infill above the seabed level. Below the seabed level, loads would be transferred to steel piles through frictional forces between concrete infill and steel casings.
However, substantial radial shrinkage and contraction occurs after concreting of concrete infill and this will hinder the load transfer from the concrete infill to steel piles because the bond may be ruptured by radial shrinkage. It is in doubt if frictional forces can be properly developed in this situation. To solve this problem, shear keys could be installed at regular spacing inside steel piles to ensure their rigid connection with concrete infill. Alternatively, expanding agents may be adopted in concrete mixes to ensure that there is no shrinkage after the concreting process.
If you have a query, you can ask a question here.