Search

Testing of Concrete Blocks

By
Er. Kaushal Kishore ,
Materials Engineer, Roorkee

INTRODUCTION
Concrete can be converted into precast masonry units such as Hollow and Solid normal and light weight concrete blocks of suitable size to be used for load and non-load bearing units for wallings. Use of such concrete blocks are more appropriate in region where soil bricks are costly, poor in strength and are not available. Depending upon the structural requirements of masonry unit, concrete mixes can be designed using ingredients available locally or if not found suitable then with in the most economical distance. The concrete mix used for normal hollow and solid blocks shall not be richer than one part by volume of cement to 6 parts by volume of combined room dry aggregates before mixing. Hollow concrete blocks for normal work used in masonry when reinforced is used shall not be leaner than 1 part cement to 8 parts room dry sand by volume. The mixes are designed with the available materials to give overall economy and the required properties of the products. The hollow load bearing concrete blocks of the standard size 400 x 200 x 200 mm will weight between 17 and 26 kg (1063 to 1625 kg/m3) when made with normal weight aggregates. Normal weight blocks are made with cement, sand, gravel, crushed stone and air-cooled slag. The grading for sand used in Hollow concrete block shall be as given below:
Continue Reading »

Winsor Probe Concrete Test

This procedure I came across in one of the site.Just for info to Beginners. This test is called WINSOR probe test.

When the concrete is done and its up and you want to know the strength of concrete with minimum damage,this is the one of the test.

Engineer will select the location.In this case its in column.

Continue Reading »

Determine The In-Situ Dry Density Of Soil By Sand Replacement Method

This test is done to determine the in-situ dry density of soil by sand replacement method as per IS: 2720 (Part XXVIII) – 1974. The apparatus needed is
i) Sand-pouring cylinder conforming to IS: 2720 (Part XXVIII) -1974
ii) Cylindrical calibrating container conforming to IS: 2720 (Part XXVIII) – 1974
iii) Soil cutting and excavating tools such as a scraper tool, bent spoon
iv) Glass plate – 450mm square and 9mm thick or larger
v) Metal containers to collect excavated soil
vi) Metal tray – 300mm square and 40mm deep with a 100mm hole in the centre
vii) Balance, with an accuracy of 1g

sand-replacement

Procedure To Determine The In-Situ Dry Density Of Soil By Sand Replacement Method

Continue Reading »

Determine The In-Situ Dry Density Of Soil By Core Cutter Method

This test is done to determine the in-situ dry density of soil by core cutter method as per IS: 2720 (Part XXIX) – 1975.The apparatus needed for this test is

i) Cylindrical core cutter
ii) Steel dolley
iii) Steel rammer
iv) Balance, with an accuracy of 1g
v) Straightedge
vi) Square metal tray – 300mm x 300mm x 40mm
vii) Trowel

Continue Reading »

Determine The Maximum Dry Density And The Optimum Moisture Content Of Soil

This test is done to determine the maximum dry density and the optimum moisture content of soil using heavy compaction as per IS: 2720 (Part 8 ) – 1983.The apparatus used is

i) Cylindrical metal mould – it should be either of 100mm dia. and 1000cc volume or 150mm dia. and 2250cc volume and should conform to IS: 10074 – 1982.
ii) Balances – one of 10kg capacity, sensitive to 1g and the other of 200g capacity, sensitive to 0.01g
iii) Oven – thermostatically controlled with an interior of noncorroding material to maintain temperature between 105 and 110oC
iv) Steel straightedge – 30cm long
v) IS Sieves of sizes – 4.75mm, 19mm and 37.5mm

cylindrical-metal-mould

Continue Reading »