Awarded as the best online publication by CIDC

Concrete Engineering

Different Failures in RCC Buildings

By
Priyanka Gupta

1.0 Introduction

In small residential buildings the quality of construction is seldom questionable. The reason varies from poor building material quality to lack of knowledge of good construction practices. Most of the times, engineers are ignored by individual house owners and masons are given sole responsibility of both design and construction. Almost all structural engineers practicing in India will agree that 99% of the failures of structures in India are not due to design failure.

Explaining the different aspect of construction that a normal home builder, engineer or contractor needs to remember.

Read More

Prevention of corrosion in RCC by bacteria

BY
ANBARASAN.R, MANIKANDAN.P AND SURESH.S,
Department of civil engineering,
IFET College of Engineering. Tamil Nadu, India.

Abstract
Steel gets oxidise (corrosion) in the present of oxygen and water. Even present of oxygen in the concrete pore will not cause a corrosion at high alkaline environment. Concrete contains microscopic pores which contain high concentrations of soluble calcium, sodium and potassium oxides, this creates alkaline condition of pH 12–13. The alkaline condition leads to a ‘passive’ layer forming on the steel surface. The dense passive layer over the reinforcement prevents the alkalinity. This paper involves in the prevention of corrosion by maintaining alkalinity in concrete by using bacteria.

Key words: Reinforced concrete, corrosion, passive layer, alkaline, bacteria.

Read More

Study On Behaviour Of Concrete Partially Replacing Quartz Sand As Fine Aggregate

BY
E.Divya1 , R.Shanthini2, S.Arulkumaran3
Student, Dept. of civil engg., IFET college of engg., India1, 2
Asst. professor, Dept. of civil engg., IFET college of engg., India3

ABSTRACT
The use of quartz sand as replacement for sand is an economical solution for making the concrete resistant to weathering. The paper presents a concrete mix design procedure for partial replacement of sand with quartz sand. Present method was performed to evaluate the additional compressive, flexural strength with higher slump over conventional concrete in which sand is replaced with 0%, 25%, 50% and 100% of quartz sand by weight with 1% super plasticizers. The research also revealed that there is possibility of replacing fine aggregate with quartz sand in the production of structural concrete. The mix proportion adopted was 1:1.7:3 as per 10262:2009. Compressive and flexural strength tests were carried out to evaluate the strength properties of concrete at the age of 7 and 28 days. Modulus of elasticity tests were carried out at the age of 28 days.

Read More

CONCRETE QUALITY CONTROL DURING CONSTRUCTION

By
1) KAUSHAL KISHORE
Materials Engineer
Roorkee
Kaushal Kishore is retired from IIT, Roorkee and now a Consulting Materials Engineer. He has over 50 years of experience in all types of Concrete Mix Design.

2) RAKESH SHARMA
Vice President Project
Supertech Limited
Rakesh Sharma is Vice President Project of M/s Supertech Limited. He has 28 years of experience in Construction.

I.T. Park, Doon Square Mall at Dehradun, Uttarakhand is being constructed by M/s Supertech Ltd. For this site M-30 grade of concrete suitable for pumped concrete is required. Aggregates for construction was stored at site. Its analysis report is given in Table 2.

For laboratory trial 5 brands of PPC cement bags were taken from local market. They were identified as cement brand, 1, 2, 3, 4 and 5. Two reputed brands of normal superplasticizers based on sulphonated naphthalene formaldehyde (SNF) were taken for trials. They were identified as SP (A) and SP (B) to find their compatibility with the given 5 brands of PPC cement identified as cement brand 1, 2, 3, 4 and 5.

COMPATIBILITY
The behavior of concrete in the presence of superplasticizers is related to the amount and type of sulfate added to the clinker. The rheological and setting Behavior are changed depending on whether the sulfate is added as anhydrite, hemihydrates, or gypsum. The difference are explained by the different rates of dissolution of these sulfates.
Read More

Concrete Strength Acceptance Criteria IRC:15-2011

By
KAUSHAL KISHORE
Materials Engineer, Roorkee

For concrete roads, flexural strength of concrete is the design criteria. For all major projects, flexural strength of the mix shall be determine by third point loading of flexural beams size 150 mm x 150 mm x 700 mm as per IS: 516. Determination of flexural strength by correlating with cube strength (compressive strength) shall not be allowed for major projects, as the correlation is not well established.

Read More

Concrete Strength Acceptance Criteria IS:456-2000

By
KAUSHAL KISHORE
Materials Engineer, Roorkee

Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability and permeability, may in fact be more important. However, the strength of concrete is almost invariably a vital element of structural design and is specified for compliance purposes.

Read More

Mix Design and Pumped Concrete

By
KAUSHAL KISHORE
Materials Engineer, Roorkee

A simple method of concrete mix design for pumpable concrete based on an estimated weight of the concrete per unit volume is described in the paper. The tables and figures presented are worked out by the author from a wide range of Indian materials. The method is suitable for normal weight concrete with admixture.

INTRODUCTION
Pumped concrete may be defined as concrete that is conveyed by pressure through either rigid pipe or flexible hose and discharged directly into the desired area. Pumping may be used for most all concrete construction, but is especially useful where space or access for construction equipment is limited.
Read More

Concrete Quality Control in 15 Minutes

By
KAUSHAL KISHORE
Materials Engineer, Roorkee

The time lag (usually 3 to 28 days) between concrete placement and the evaluation of cube strength is a primary deficiency of the current quality control method used in concrete construction. The development of accelerated curing techniques have reduced the lag time to 24 to 48 hours. But even the 24 hours time is sufficient to allow the concrete to set and harden in the form prior to the testing of the accelerated cubes. This paper describes the method for determination of water-cement ratio of the mix discharged from the mixer and conjunction with air-content tests can predict 28-days strength of concrete in 15 minutes, so that any mix found sub-standard should not be allowed for placement.

Read More

28-Days Strength of Concrete in 15 Minutes

By
KAUSHAL KISHORE
Materials Engineer, Roorkee

Determination of compressive strength of concrete, either accelerated or normal 28-days, takes such a long time that remedial action for defective concrete cannot be under-taken at an early stage. By the time cube strength results indicate low strength, it is too late to do any remedy for the defective concrete which has already set in the form, Further in whole day of concreting work, cubes are filled from only a few batches of concrete which do not actually represent the strength of the entire concrete mass being used in the construction. This shows the limitations of cube strength test for the quality control of concrete.

Read More

Dusting of Concrete Slab Surface

By
KAUSHAL KISHORE
Materials Engineer, Roorkee

It is supposed that concrete should give satisfactory service to its entire life. However problems arises, if care is not taken during construction blemish appears on the surface of a concrete slab, it will likely to be one of these: bilisters, cracking, crazing, curling, delamination, discoloration. DUSTING, efflorescence, low spots, popouts, scaling or spelling. This paper will give the details about dusting.

DUSTING
Formation of loose powder resulting from disintegration of surface of hardened concrete is called dusting or chalking and this is composed of water, cement and fine particles. The concrete surface powder under any kind of traffic, and also surface can be easily scratched with nail or even by sweeping.
Read More

Ask a question