Awarded as the best online publication by CIDC

Project Reports

Eco Friendly And Sustainable Transportation

In this paper two aspects of eco-friendly transportation has been discussed. Transportation is a huge consumer of energy and resources and also a major source of environment pollution (basically air pollution). People tend to use motorized vehicle even for the short distances because of inconvenience and unsafe conditions for bicycling. This leads excessive use of fuel. Limiting the motorized transportation to a defined boundary is required to control the fuel usage and also to reduce site air and noise pollution. Green vehicles are very much energy efficient, pollution free and convenient mode for short distance travelling. But because of lack of facilities their use is not preferred. Eco-friendly transportation promotes use of such efficient vehicles by adequate provisions. Eco-friendly transportation is beneficial for the users as it keeps environment free of pollution and posses healthy living conditions. The use of green vehicle is one part of eco-friendly transportation, the other and most important aspect of sustainable transportation is the use of the waste materials such as fly ash, steel industry slag, paper industry waste in the construction of pavements, embankments of roads and rails etc. which are dangerous as far as the environmental pollution is concerned.

Key words:– Green vehicle, Eco-friendly or sustainable transportation, fly ash, Construction of pavements.
Read More

Effect Of Eccentricity On Analysis and Design Of Isolated Footings

(A CASE STUDY OF Jammu and Kashmir)

Note – Right click on images and click view image to see actual size of image

Footings are often subjected to moments from columns in addition to the axial loads. The presence of certain amount of eccentricity of loading in the footing induces moment on footing. A careful consideration has to be given to the presence of eccentricity, while performing the analysis and design of such footings, as an increase in eccentricity beyond certain limit renders a considerable area of footing ineffective to resist the stresses due to development of tension. Under these circumstances, the conventional flexural equation becomes inapplicable, thereby imparting more complexity in the analysis.

In this Thesis an attempt has been made to understand the behaviour of footings subjected to Uniaxial and biaxial eccentricity.

Two cases of uniaxial eccentricity are considered, Case I with column placed away from centre of footing, load being concentric with the column and Case II with column at centre of footing and load placed at certain eccentricity. For each case three conditions of eccentricity are considered ie e=0, eL/6. Complete analysis has been performed using Limit State Method for SBC = 40, 50, 65 and 100 KN/Sq m which are prevalent in the region under consideration. For biaxial cases two eccentricity conditions with eL/6 and SBC = 100 KN/Sq m have been analyzed. The analysis of footing subjected to biaxial eccentricity was carried out manually and as per charts and tables prevalent in literature.

A comparative study was conducted for both cases with reference to the design parameters and permissible values. The effect of eccentricity on quantity, cost and various other parameters were studied. The analysis was also carried out using SAP – 2000 Software for both Uniaxial and Biaxial Cases. The results obtained manually and by the use of software have been compared and difference analyzed. A computer program was developed for Analysis and Design of footing for Uniaxial and Biaxial cases in M.S. Excel to reduce the iterative work and to save time.

It was observed that there is a remarkable increase in quantity of concrete and steel when the loads are eccentric, the increasing factor being more in case of column placed away from the centre of footing as compared to the column placed at centre of footing. The results also highlight that the foundations become highly uneconomical if the geotechnical investigation reveals incorrect values of safe bearing capacities.
Read More

A Vision for Sustainable Construction Combined Efforts by Government and Construction Industry Together

History itself is the evident that from the years together the people moves to the region where they can satisfy their needs and wants with fewer efforts and more opportunities. This thought lead to accumulation of people in some areas resulting in urbanization. As this urban area contributes highly in nation’s economy even the government announce a far reaching progamme of investments in urban development. However, these urban agglomerations manifest generally unsustainable ecologies. The depletion of material resources, the accumulation of waste, and the over-expenditure of non-renewable energy are direct consequences of the predatory expansion of urbanization.

Out of this the major contribution goes to construction industry as the data reveals that Construction is responsible for 40% of the total world flows of raw materials such as sand, gravel and clay. It takes one quarter of all virgin wood, 40% of energy use, 16% of water withdrawals, and produces 17% of all waste generated. If this practise goes on uninterruptible it will cause total exhaustion of natural resource and will create a great question for generations to come for their survival.

This paper aims to add up a new dimension in vision for sustainable development by considering a combined effort of government and industry both. Strategy for the same considers the sustainable development in three phases such, first is the consideration of various tool to achieve it that are Means such as procurement, Design, Innovation etc. Second stage basically defines the ends out of it such as mitigation in climatic changes, water conservation; reduce in wastage and overall optimum use of resources. Final is the controlling stage which is supposed to achieve by using the tools such as implementations of rules for carbon emission and wastage made, formation of government agencies for environmental auditing etc.

This view for Sustainable Construction lays out specific actions by industry and by Government which will contribute to the achievement of overarching targets within each of the main areas covered by the sustainability agenda.
Read More

Roof Waterproofing By Brick Bat Coba

Er. Kaushal Kishore ,
Materials Engineer, Roorkee

Waterproofing is a treatment of a surface or structure to prevent the passage of water under hydrostatic pressure. Waterproofing barrier system may be placed on the positive or negative side. Damp proofing is a treatment of a surface or structure to resit the passage of water in the absence of hydrostatic pressure. A damp proofing barrier system is used to perform the same functions as a waterproofing system but cannot be used to protect against water pressure. Water may be forced through building members by hydrostatic pressure, water vapour gradient, capillary action, wind-driven rain, or any combination of these. This movement is aggravated by porous concrete, cracks or structural defects, or joints that are improperly designed or installed. Leakage of water into structure may cause structural damage, and invariably cause damage to the contents of the structure.

Read More

Save Environment With Green Construction

Er. Kaushal Kishore ,
Materials Engineer, Roorkee

Portland cement, is made by a calcareous material, such as limestone or chalk, and from alumina and silica found as clay or shale. The process of manufacture of cement consists essentially of grinding the raw materials, mixing them intimately in certain proportions and burning in a large rotary kilin at a temperature of up to about 14500C. When the material sinters and partially fuses into balls known as clinker, the clinker is cooled and ground to a fine powder, with some gypsum added, and the resulting product is the commercial portland cement so widely used through out the world. The manufacturing of this cement release in the atmosphere 0.8 tonnes of CO2 in the production of one tonne of cement. When water is mixed with cement and aggregates in the production of concrete for use in the construction, each tonne of cement can absorb up to 0.4 tonnes of CO2 , but that still leaves an overall carbon footprint per tonne of 0.4 tonnes. In the year 2009 about 2000 million tonnes of CO2 was emitted in the atmosphere in the production of cement.

The above problems have been overcome from researches by Nikolas Vlasopoulos Chief Scientist and his colleagues at Imperial College, London, and they have set up a company of Novacem’s cement which is making cement from magnesium silicate that absorb more CO2 as it hardens. Valaspoulos responded that magnesium slicates are abundant world wide with 10,000 billion tonnes available. He is confident that material will be strong enough for use in buildings but acknowledge that getting licence to use it will take several years of testing.
Read More

Ask a question