Search

Why are axial flow pumps suitable for large flows and low heads?

It is well known that axial flow pumps are most suitable for providing large flows and low heads. The reason behind this is closely related to the configuration and design of the pumps. In axial flow pumps, the size of inlet diameter is greater than that of impeller diameter. For low flow condition the velocity is relatively small and this increases the chances of occurrence of separation which brings about additional head losses and vibration. On the contrary, if the discharge is large enough the problem of separation is minimized.

Advertisements

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Filed under Hydraulics | 0 Comments

Why are radial flow pumps suitable for small flows and high heads?

In radial flow pumps, a diffuser/volute is normally designed at it outlet to convert the kinetic energy gained during the pumping process to pressure head. The diffuser is characterized by widening of outlet pipes, resulting in the decrease of velocity (by continuity equation) and an increase in pressure head (by Bernoulli’s equation). In case of large flows to be handled by the pumps, the large velocity results in formation of significant Coriolis force which tends to deviate the outlet flow from design conditions.

Advertisements

At the inlet part of the pumps, the inlet size is smaller than the diameter of the impeller. Consequently, the velocity of flow associated with a small area is relatively large and there is less problem of separation in low flow condition. All in all, the efficiency of radial flow pumps is high when handling small flows.

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Filed under Hydraulics | 1 Comment

What is the purpose of adding cooling pipes or even using cold water for concrete in concreting operation?

All these measures aim at reducing the placing temperature and reducing thermal cracks induced during concreting of massive pours. Since the final concreting temperature should be the ambient temperature, reducing the initial placing temperature will also lower the peak hydration temperature. Therefore, the temperature difference between the hydration peak and the ambient temperature is reduced accordingly and subsequently the thermal effect to concrete structure can be reduced by controlling the placing temperature.

Advertisements

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Filed under Hydraulics | 0 Comments

In selection of waterstop, shall engineers use plain dumb-bell type or center-bulb type?

The plain dumb-bell type is used for joint location where small movements are anticipated. Therefore, construction joints are desirable locations of this type of waterstop. On the other hand, center-bulb type waterstop is suitable for expansion joints or locations where lateral and shear movements occur due to settlement or deflection. Reference is made to W. L. Monks (1972).

Advertisements

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Filed under Hydraulics | 0 Comments

In the design of service reservoirs, how are reservoir floors designed to prevent leakage of water due to seasonal and shrinkage movements?

There are in general two main approaches in designing floors of service reservoirs:

(i) In the first method, movement joints are designed in each panel of reservoir floors so that they can expand and contract freely. Each panel is completely isolated from one another and a sliding layer is placed beneath them to aid in sliding.

Advertisements

(ii) The second method, on the contrary, does not make provision to free movement. Due to seasonal and shrinkage movements, cracks are designed to occur in the reservoir floors such that very tiny cracks are spread over the floor and these cracks are too small to initiate corrosion or leakage. However, in this case, the amount of reinforcement used is much larger than the first approach.

This question is taken from book named – A Self Learning Manual – Mastering Different Fields of Civil Engineering Works (VC-Q-A-Method) by Vincent T. H. CHU.

Filed under Hydraulics | 0 Comments