What are the main design considerations for temporary nose in incremental launching?

There are two main design considerations for temporary nose:

(i) Maximum sagging moment
The maximum sagging moment at the point of connecting the nose to superstructure occurs when the superstructure is launched far from the pier. It is estimated to occur at about 75% of the span length.

Continue Reading »

Which of the following methods to reduce cantilever moment is better in incremental launching, (i) temporary nose, (ii) mast or (iii) auxiliary piers?

The use of mast is an alternative to temporary nose. From practical point of view, the use of mast requires continual adjustment of forces in the guys when the superstructure is pushed forward. On the other hand, the implementation of temporary nose system does not require much attention during operation.

Continue Reading »

Can the use of temporary nose in incremental launching method reduce the cantilever moment of superstructure to the value of inner support moment?

When the superstructure is pushed forward, a temporary nose is usually adopted at the front end of the superstructure to reduce the cantilever moment for which the central prestress is designed. The length of temporary nose is about 60-65% of bridge span.

The bending moment of self-weight for internal spans (equal span) of long bridge is -0.0833WL2
at piers and +0.0417W L2 at mid-span (W = unit weight of deck and L = span length). However, without the use of temporary nose, the bending moment in the leading pier when the deck has to cantilever from one pier to another would be -0.5WL2, which is 6 times higher than normal values at support.

Continue Reading »

Should special design be catered for in bridge piers upon jacking up of superstructure for installation of bearings in Incremental Launching method?

After the completion of launching process, the superstructure has to be lifted up to allow for installation of bearings. This is usually achieved by means of jacks to raise 5-10mm successively at each pier.

Continue Reading »

Central prestressing is normally required during construction in Incremental Launching method. Why?

The erection condition plays an important role to the structural design of bridges when incremental launching method is adopted.

Each section of superstructure is manufactured directly against the preceding one and after concrete hardens, the whole structure is moved forward by the length of one section. When the superstructure is launched at prefabrication area behind one of the abutments, it is continually subjected to alternating bending moments. Each section of superstructure (about 15m to 25m long) is pushed from a region of positive moment and then to a region of negative moment and this loading cycled is repeated. As such, tensile stresses occur alternately at the bottom and top portion of superstructure section. For steel, it is of equal strength in both compression and tension and it has no difficulty in handling such alternating stress during launching process. However concrete could only resist small tensile stresses and therefore, central prestressing is carried out to reduce the tensile stress to acceptable levels.

Continue Reading »