Search

Analysis and Design of Flyover

Posted in Project Reports | Email This Post Email This Post |
Print Friendly, PDF & Email

Submitted by
PURUSOTHAMAN.S
VIGNESH.P
UMA MAHESHWARAN.J
JAYABAL .V

THE KAVERY ENGINEERING COLLEGE
DEPARTMENT OF CIVIL ENGINEERING
ANNA UNIVERSITY CHENNAI

ABSTRACT
Our project deals with the Design of Fly over . The location is at five roads junction at SALEM . which is facing major traffic problems due to the construction. We have done a traffic survey and designed all the structural parts for this Fly over .

The Fly over is of 320 m length with 32 spans, 10 m per span. It consists of a deck slab, longitudinal girders, cross girders, deck beam, pier and foundation. Structural design of one span was made for all the above components. Slab is designed by Working stress method as per the recommendation of IRC: 21-2000, Clause 304.2.1.

Deck slab is designed for maximum moment due to deck action. the T beam designed as the IRC :21-2000. The deck beam is designed as a cantilever on a pier.

The Pier is designed for the axial dead load and live load from the slab, girders, deck beam.Foundation designed as footing for the safe load bearing in the soil. All the elements are designed by using M15 grade concrete and Fe415grade steel. Designs are based on Working stress and Limit state method as per IRC: 21-2000 and IS: 456-2000.

Notation and symbols

The following symbols carrying the meaning noted against them are used in this volume.

lx        =       Effective length about XX axis

ly       =       Effective length about YY axis

leff     =       Effective length

L       =       Overall length

B       =       Breadth of the member

D       =       Overall depth

d        =       Effective depth

W      =       Total load

Wu    =       Design load

ax1   =       Negative moment coefficient of continuous edge

ax2   =       Negative moment coefficient at mid span

Mx1   =       Negative moment at continuous edge

Mx2   =       Positive moment at mid span

MR    =       Moment of resistance

Mu     =       Factored moment

Ast    =       Area of steel required for tension

bf      =       Breadth of flange

Df      =       Depth of flange

fck     =       Characteristic compressive strength of concrete

fy       =       characteristic compressive strength of steel

P       =       Axial load on a compression member

Vu     =       Shear force

tc      =       Shear strength coefficient of concrete

tv      =       Nominal shear stress

?        =       Strain in compression steel

Ø       =       Diameter of mild bars

#        =       Diameter of HYSD bars

N       =       Newton

kN     =       Kilo Newton

Z       =       Lever arm

C/C   =       Centre to Centre distance

m       =       Modular ratio

S       =       Spacing of stirrups

u.d.l   =       uniformly distributed load

Ld     =       Development length

Fe 415=      High yield strength deformed bars

M20   =       grade of concrete

sst     =       Permissible stress in steel in tension

ssv    =       Permissible stress in shear reinforcement

scbc  =       Permissible stress in concrete in bending compression

Advertisements

CHAPTER – 1

1.INTRODUCTION
Our nation being primarily an agricultural country. 90% of population is depending upon it and 10% of population depending upon industrial activities.

For conveying the product materials such as food grains, industrial goods the roads are essential.

The roads and bridges are very important for growth of economy of the country. Now our country is being developed by developing roads and bridges.

The loss of fuel for combustion and the associated cost resulting from waiting for the signal to change are also estimated, and these are found to be significant.

When it rains, it’s not just the roads that are water logged all other streets also get full with water so it’s easy to travel by flyover to get ease of rain water.

1.1.   OBJECTIVE :
The project area is having very high density of traffic flow. The public felt inconvenient to cross the busy five   roads   highways &therefore the flyover is essentially required at the junction.

For easy traffic flow of agricultural goods and industrial goods without traffic congestion flyover is essential to overcome the traffic congestion required.

All the drawings are drafted by Auto- CAD 2013 and analysis by STAAD pro vis8.

1.2 Types of roads and fly   over :
In our country there are so many types of roads are being constructed,

1) Cart roads

2) Minor district roads

3) Major district roads

4) Sate highway roads

5) National highways roads

6) Over pass fly over

7) Under pass fly over

1.3 Necessity of flyover :
For easy traffic flow of agricultural goods and industrial goods without traffic congestion flyover or over bridges is essentially to overcome the traffic congestion required.

1.4 Selection of site:
1) The following points are the guiding factors for selection of suitable site,

2) The roads are crossing perpendicular to each other.

3) The site should have more traffic congestion.

4) The availability of men and materials are to be ascertained

1.5 Location:

Construction of a flyover across five roads in Salem . The total length of flyover is 320m and width of 8m.

1.6 TRAFFIC SURVEY:
Traffic survey was made on 06.06.2016, inthe project site from 6.00 pm to7.00 pm. This time was selected on the basic of the past traffic study as an average of peak hour.

All the four arms of the site was observed and the number of vehicles passed was converted to PCU’s(Passenger car unit).

1.7 TRAFFIC PROJECTION:
The passenger car unit of a vehicle type has been found to be depends up on the size, and speed of the vehicle type and environment. They are not dependent on the flow and road width.

As per IRC: 92-2000, the traffic volume limit is10000PCUs/hour. The capacity of junction was estimated at 6547 PCS’s / hour. The design period is taken as 30 years. One year would be taken for the construction. So traffic is projection. So traffic is projected for 31 years.

CHAPTER-2
2. DESIGN CONSIDERATION

2.1.1 SLAB:
Slabs are the plate elements which carry the loads primarily flexure. They usually carry vertical loads. Under the action of horizontal loads, due to a large moment of inertial they can carry quite large wind and earthquake forces, and transfer them to beams. A reasonable thickness of slab can act as a rigid diaphragm under the action of horizontal load the rigid diaphragm is plate whose all element displace equally in the direction of applied in plane loads. The slab with sufficient thickness acts as rigid diaphragm when in plane horizontal loads like wind or earthquake are acting on it due to its very large in plane moment of inertia. As a result, it constraints the connected column to deflect equally in given horizontal direction of wind or earthquake loads.

2.1.2 BEAM
Beams carry loads from slab and also direct loads such as masonry walls and their selfweights. The beam may be supported on the other beams or may be supported by column forming an integral part of the frame. Beams are primarily the flexural members.

2.1.3 COLUMN
Columns are the vertical members carrying loads from beams and from upper columns. The loads may be axial or eccentric. The importance of the column is greater than that of the beams and slab.

This is because, if one beam fails, it will be a local failure of one floor, but if one column fails, it can lead to collapse of a complete structure. The safety provisions adopted by the standards are therefore more for columns than for beams or slabs

2.1.4 FOUNDATION
Foundation is the load transmitting members. The loads from the columns and the walls to be transmitted to the solid ground through foundation.

2.2 LOAD AND STRUCTURE
The correct estimation of loads on a structure or a part of a structure leads the designer to the safe and economical design. It is very important that no load which is to be borne by the structure is over loaded.

Estimation of different types of loads expected to be borne by the structure throughout its design life. Different kinds of loads may be estimated by using respective Indian Standard Codes of practice.

Determination of worst combination of loads that may occur at one throughout the life of structure. The standard codes of practice give guidelines for this. All the loads are not expected at the same time for example, IS-875, wind and seismic force need not be considered as acting simultaneously. The earthquake is a rare phenomenon. It is therefore very unlikely that the maximum earthquake coincides with maximum of other occasional forces like wind, flood etc., therefore for the design purpose these are assumed not to occur simultaneously.

2.2.1TYPES OF LOADS:

DEAD LOAD:
Dead loads are the load due to self weight of structure or structural members. Dead loads and static loads remain reasonably constant throughout the life of a structure. The unit weight of different materials may be taken from IRC:21-2000 code of practice for design loads for the buildings and structures part 1 dead loads.

LIVE LOAD:
Live loads are loads which are not steady unlike the dead loads they can change their magnitudes. Live loads are comprehensively described in tables 1 and 2 IRC:21-2000 part 2 imposes loads.

IMPACT LOAD:
Impact load are the loads caused by the vibration of live loads.

2.3 PROPOSED BY FLY OVER
FIG (1)

CHAPTER – 3

 

3.STADD PRO REPORT

 

3.1STADD PRO INPUT

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 18-Sep-16

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

1 2 0 0; 2 2 2.5 0; 3 4.00001 2.5 0; 4 6.00001 2.5 0; 5 8.00002 2.5 0;

6 0 2.5 0; 7 6.00001 0 0; 8 2 0 2; 9 2 2.5 2; 10 4.00001 2.5 2;

11 6.00001 2.5 2; 12 8.00002 2.5 2; 13 0 2.5 2; 14 6.00001 0 2; 15 2 0 4.00001;

16 2 2.5 4.00001; 17 4.00001 2.5 4.00001; 18 6.00001 2.5 4.00001;

19 8.00002 2.5 4.00001; 20 0 2.5 4.00001; 21 6.00001 0 4.00001; 22 2 0 6.00001;

23 2 2.5 6.00001; 24 4.00001 2.5 6.00001; 25 6.00001 2.5 6.00001;

26 8.00002 2.5 6.00001; 27 0 2.5 6.00001; 28 6.00001 0 6.00001; 29 2 0 8.00002;

30 2 2.5 8.00002; 31 4.00001 2.5 8.00002; 32 6.00001 2.5 8.00002;

33 8.00002 2.5 8.00002; 34 0 2.5 8.00002; 35 6.00001 0 8.00002; 36 2 0 10;

37 2 2.5 10; 38 4.00001 2.5 10; 39 6.00001 2.5 10; 40 8.00002 2.5 10;

41 0 2.5 10; 42 6.00001 0 10; 43 6.40001 2.5 10; 44 6.40001 2.5 9.66669;

45 8.00002 2.5 9.66669; 46 4.80001 2.5 10; 47 4.80001 2.5 9.66669;

48 3.20001 2.5 10; 49 3.20001 2.5 9.66669; 50 1.6 2.5 10; 51 1.6 2.5 9.66669;

52 0 2.5 9.66669; 53 6.40001 2.5 9.33335; 54 8.00002 2.5 9.33335;

55 4.80001 2.5 9.33335; 56 3.20001 2.5 9.33335; 57 1.6 2.5 9.33335;

58 0 2.5 9.33335; 59 6.40001 2.5 9.00002; 60 8.00002 2.5 9.00002;

61 4.80001 2.5 9.00002; 62 3.20001 2.5 9.00002; 63 1.6 2.5 9.00002;

64 0 2.5 9.00002; 65 6.40001 2.5 8.66668; 66 8.00002 2.5 8.66668;

67 4.80001 2.5 8.66668; 68 3.20001 2.5 8.66668; 69 1.6 2.5 8.66668;

70 0 2.5 8.66668; 71 6.40001 2.5 8.33335; 72 8.00002 2.5 8.33335;

73 4.80001 2.5 8.33335; 74 3.20001 2.5 8.33335; 75 1.6 2.5 8.33335;

76 0 2.5 8.33335; 77 6.40001 2.5 8.00002; 78 4.80001 2.5 8.00002;

79 3.20001 2.5 8.00002; 80 1.6 2.5 8.00002; 81 6.40001 2.5 7.66668;

82 8.00002 2.5 7.66668; 83 4.80001 2.5 7.66668; 84 3.20001 2.5 7.66668;

85 1.6 2.5 7.66668; 86 0 2.5 7.66668; 87 6.40001 2.5 7.33335;

88 8.00002 2.5 7.33335; 89 4.80001 2.5 7.33335; 90 3.20001 2.5 7.33335;

91 1.6 2.5 7.33335; 92 0 2.5 7.33335; 93 6.40001 2.5 7.00001;

94 8.00002 2.5 7.00001; 95 4.80001 2.5 7.00001; 96 3.20001 2.5 7.00001;

97 1.6 2.5 7.00001; 98 0 2.5 7.00001; 99 6.40001 2.5 6.66668;

100 8.00002 2.5 6.66668; 101 4.80001 2.5 6.66668; 102 3.20001 2.5 6.66668;

103 1.6 2.5 6.66668; 104 0 2.5 6.66668; 105 6.40001 2.5 6.33335;

106 8.00002 2.5 6.33335; 107 4.80001 2.5 6.33335; 108 3.20001 2.5 6.33335;

109 1.6 2.5 6.33335; 110 0 2.5 6.33335; 111 6.40001 2.5 6.00001;

112 4.80001 2.5 6.00001; 113 3.20001 2.5 6.00001; 114 1.6 2.5 6.00001;

115 6.40001 2.5 5.66668; 116 8.00002 2.5 5.66668; 117 4.80001 2.5 5.66668;

118 3.20001 2.5 5.66668; 119 1.6 2.5 5.66668; 120 0 2.5 5.66668;

121 6.40001 2.5 5.33334; 122 8.00002 2.5 5.33334; 123 4.80001 2.5 5.33334;

124 3.20001 2.5 5.33334; 125 1.6 2.5 5.33334; 126 0 2.5 5.33334;

127 6.40001 2.5 5.00001; 128 8.00002 2.5 5.00001; 129 4.80001 2.5 5.00001;

130 3.20001 2.5 5.00001; 131 1.6 2.5 5.00001; 132 0 2.5 5.00001;

133 6.40001 2.5 4.66668; 134 8.00002 2.5 4.66668; 135 4.80001 2.5 4.66668;

136 3.20001 2.5 4.66668; 137 1.6 2.5 4.66668; 138 0 2.5 4.66668;

139 6.40001 2.5 4.33334; 140 8.00002 2.5 4.33334; 141 4.80001 2.5 4.33334;

142 3.20001 2.5 4.33334; 143 1.6 2.5 4.33334; 144 0 2.5 4.33334;

145 6.40001 2.5 4.00001; 146 4.80001 2.5 4.00001; 147 3.20001 2.5 4.00001;

148 1.6 2.5 4.00001; 149 6.40001 2.5 3.66667; 150 8.00002 2.5 3.66667;

151 4.80001 2.5 3.66667; 152 3.20001 2.5 3.66667; 153 1.6 2.5 3.66667;

154 0 2.5 3.66667; 155 6.40001 2.5 3.33334; 156 8.00002 2.5 3.33334;

157 4.80001 2.5 3.33334; 158 3.20001 2.5 3.33334; 159 1.6 2.5 3.33334;

160 0 2.5 3.33334; 161 6.40001 2.5 3; 162 8.00002 2.5 3; 163 4.80001 2.5 3;

164 3.20001 2.5 3; 165 1.6 2.5 3; 166 0 2.5 3; 167 6.40001 2.5 2.66667;

168 8.00002 2.5 2.66667; 169 4.80001 2.5 2.66667; 170 3.20001 2.5 2.66667;

171 1.6 2.5 2.66667; 172 0 2.5 2.66667; 173 6.40001 2.5 2.33334;

174 8.00002 2.5 2.33334; 175 4.80001 2.5 2.33334; 176 3.20001 2.5 2.33334;

177 1.6 2.5 2.33334; 178 0 2.5 2.33334; 179 6.40001 2.5 2; 180 4.80001 2.5 2;

181 3.20001 2.5 2; 182 1.6 2.5 2; 183 6.40001 2.5 1.66667;

184 8.00002 2.5 1.66667; 185 4.80001 2.5 1.66667; 186 3.20001 2.5 1.66667;

187 1.6 2.5 1.66667; 188 0 2.5 1.66667; 189 6.40001 2.5 1.33333;

190 8.00002 2.5 1.33333; 191 4.80001 2.5 1.33333; 192 3.20001 2.5 1.33333;

193 1.6 2.5 1.33333; 194 0 2.5 1.33333; 195 6.40001 2.5 0.999999;

196 8.00002 2.5 0.999999; 197 4.80001 2.5 0.999999; 198 3.20001 2.5 0.999999;

199 1.6 2.5 0.999999; 200 0 2.5 0.999999; 201 6.40001 2.5 0.666664;

202 8.00002 2.5 0.666664; 203 4.80001 2.5 0.666664; 204 3.20001 2.5 0.666664;

205 1.6 2.5 0.666664; 206 0 2.5 0.666664; 207 6.40001 2.5 0.33333;

208 8.00002 2.5 0.33333; 209 4.80001 2.5 0.33333; 210 3.20001 2.5 0.33333;

211 1.6 2.5 0.33333; 212 0 2.5 0.33333; 213 6.40001 2.5 0; 214 4.80001 2.5 0;

215 3.20001 2.5 0; 216 1.6 2.5 0;

MEMBER INCIDENCES

1 1 2; 2 2 215; 3 3 214; 4 4 213; 5 2 216; 6 4 7; 8 2 9; 9 3 10; 10 4 11;

11 5 208; 12 6 212; 14 8 9; 15 9 181; 16 10 180; 17 11 179; 18 9 182; 19 11 14;

21 9 16; 22 10 17; 23 11 18; 24 12 174; 25 13 178; 27 15 16; 28 16 147;

29 17 146; 30 18 145; 31 16 148; 32 18 21; 34 16 23; 35 17 24; 36 18 25;

37 19 140; 38 20 144; 40 22 23; 41 23 113; 42 24 112; 43 25 111; 44 23 114;

45 25 28; 47 23 30; 48 24 31; 49 25 32; 50 26 106; 51 27 110; 53 29 30;

54 30 79; 55 31 78; 56 32 77; 57 30 80; 58 32 35; 60 30 37; 61 31 38; 62 32 39;

63 33 72; 64 34 76; 66 36 37; 67 37 48; 68 38 46; 69 39 43; 70 37 50; 71 39 42;

72 43 40; 73 45 40; 75 46 39; 77 48 38; 79 50 41; 81 52 41; 83 54 45; 88 58 52;

90 60 54; 95 64 58; 97 66 60; 102 70 64; 104 72 66; 109 76 70; 111 77 33;

113 78 32; 115 79 31; 117 80 34; 120 82 33; 125 86 34; 127 88 82; 132 92 86;

134 94 88; 139 98 92; 141 100 94; 146 104 98; 148 106 100; 153 110 104;

155 111 26; 157 112 25; 159 113 24; 161 114 27; 164 116 26; 169 120 27;

171 122 116; 176 126 120; 178 128 122; 183 132 126; 185 134 128; 190 138 132;

192 140 134; 197 144 138; 199 145 19; 201 146 18; 203 147 17; 205 148 20;

208 150 19; 213 154 20; 215 156 150; 220 160 154; 222 162 156; 227 166 160;

229 168 162; 234 172 166; 236 174 168; 241 178 172; 243 179 12; 245 180 11;

247 181 10; 249 182 13; 252 184 12; 257 188 13; 259 190 184; 264 194 188;

266 196 190; 271 200 194; 273 202 196; 278 206 200; 280 208 202; 285 212 206;

287 213 5; 289 214 4; 291 215 3; 293 216 6;

ELEMENT INCIDENCES SHELL

74 40 43 44 45; 76 43 46 47 44; 78 46 48 49 47; 80 48 50 51 49; 82 50 41 52 51;

84 45 44 53 54; 85 44 47 55 53; 86 47 49 56 55; 87 49 51 57 56; 89 51 52 58 57;

91 54 53 59 60; 92 53 55 61 59; 93 55 56 62 61; 94 56 57 63 62; 96 57 58 64 63;

98 60 59 65 66; 99 59 61 67 65; 100 61 62 68 67; 101 62 63 69 68;

103 63 64 70 69; 105 66 65 71 72; 106 65 67 73 71; 107 67 68 74 73;

108 68 69 75 74; 110 69 70 76 75; 112 72 71 77 33; 114 71 73 78 77;

116 73 74 79 78; 118 74 75 80 79; 119 75 76 34 80; 121 33 77 81 82;

122 77 78 83 81; 123 78 79 84 83; 124 79 80 85 84; 126 80 34 86 85;

128 82 81 87 88; 129 81 83 89 87; 130 83 84 90 89; 131 84 85 91 90;

133 85 86 92 91; 135 88 87 93 94; 136 87 89 95 93; 137 89 90 96 95;

138 90 91 97 96; 140 91 92 98 97; 142 94 93 99 100; 143 93 95 101 99;

144 95 96 102 101; 145 96 97 103 102; 147 97 98 104 103; 149 100 99 105 106;

150 99 101 107 105; 151 101 102 108 107; 152 102 103 109 108;

154 103 104 110 109; 156 106 105 111 26; 158 105 107 112 111;

160 107 108 113 112; 162 108 109 114 113; 163 109 110 27 114;

165 26 111 115 116; 166 111 112 117 115; 167 112 113 118 117;

168 113 114 119 118; 170 114 27 120 119; 172 116 115 121 122;

173 115 117 123 121; 174 117 118 124 123; 175 118 119 125 124;

177 119 120 126 125; 179 122 121 127 128; 180 121 123 129 127;

181 123 124 130 129; 182 124 125 131 130; 184 125 126 132 131;

186 128 127 133 134; 187 127 129 135 133; 188 129 130 136 135;

189 130 131 137 136; 191 131 132 138 137; 193 134 133 139 140;

194 133 135 141 139; 195 135 136 142 141; 196 136 137 143 142;

198 137 138 144 143; 200 140 139 145 19; 202 139 141 146 145;

204 141 142 147 146; 206 142 143 148 147; 207 143 144 20 148;

209 19 145 149 150; 210 145 146 151 149; 211 146 147 152 151;

212 147 148 153 152; 214 148 20 154 153; 216 150 149 155 156;

217 149 151 157 155; 218 151 152 158 157; 219 152 153 159 158;

221 153 154 160 159; 223 156 155 161 162; 224 155 157 163 161;

225 157 158 164 163; 226 158 159 165 164; 228 159 160 166 165;

230 162 161 167 168; 231 161 163 169 167; 232 163 164 170 169;

233 164 165 171 170; 235 165 166 172 171; 237 168 167 173 174;

238 167 169 175 173; 239 169 170 176 175; 240 170 171 177 176;

242 171 172 178 177; 244 174 173 179 12; 246 173 175 180 179;

248 175 176 181 180; 250 176 177 182 181; 251 177 178 13 182;

253 12 179 183 184; 254 179 180 185 183; 255 180 181 186 185;

256 181 182 187 186; 258 182 13 188 187; 260 184 183 189 190;

261 183 185 191 189; 262 185 186 192 191; 263 186 187 193 192;

265 187 188 194 193; 267 190 189 195 196; 268 189 191 197 195;

269 191 192 198 197; 270 192 193 199 198; 272 193 194 200 199;

274 196 195 201 202; 275 195 197 203 201; 276 197 198 204 203;

277 198 199 205 204; 279 199 200 206 205; 281 202 201 207 208;

282 201 203 209 207; 283 203 204 210 209; 284 204 205 211 210;

286 205 206 212 211; 288 208 207 213 5; 290 207 209 214 213;

292 209 210 215 214; 294 210 211 216 215; 295 211 212 6 216;

ELEMENT PROPERTY

74 76 78 80 82 84 TO 87 89 91 TO 94 96 98 TO 101 103 105 TO 108 110 112 114 –

116 118 119 121 TO 124 126 128 TO 131 133 135 TO 138 140 142 TO 145 147 149 –

150 TO 152 154 156 158 160 162 163 165 TO 168 170 172 TO 175 177 179 TO 182 –

184 186 TO 189 191 193 TO 196 198 200 202 204 206 207 209 TO 212 214 216 –

217 TO 219 221 223 TO 226 228 230 TO 233 235 237 TO 240 242 244 246 248 250 –

251 253 TO 256 258 260 TO 263 265 267 TO 270 272 274 TO 277 279 281 TO 284 –

286 288 290 292 294 295 THICKNESS 0.6

DEFINE MATERIAL START

ISOTROPIC CONCRETE

E 2.17184e+007

POISSON 0.17

DENSITY 23.6158

ALPHA 5e-006

DAMP 0.05

TYPE CONCRETE

STRENGTH FCU 27578.9

END DEFINE MATERIAL

MEMBER PROPERTY AMERICAN

1 6 14 19 27 32 40 45 53 58 66 71 PRIS YD 0.75 ZD 0.75

2 TO 5 8 TO 12 15 TO 18 21 TO 25 28 TO 31 34 TO 38 41 TO 44 47 TO 51 –

54 TO 57 60 TO 64 67 TO 70 72 73 75 77 79 81 83 88 90 95 97 102 104 109 111 –

113 115 117 120 125 127 132 134 139 141 146 148 153 155 157 159 161 164 169 –

171 176 178 183 185 190 192 197 199 201 203 205 208 213 215 220 222 227 229 –

234 236 241 243 245 247 249 252 257 259 264 266 271 273 278 280 285 287 289 –

291 293 PRIS YD 0.53 ZD 0.53

CONSTANTS

MATERIAL CONCRETE ALL

SUPPORTS

1 7 8 14 15 21 22 28 29 35 36 42 FIXED

LOAD 1 LOADTYPE Dead TITLE LOAD CASE 1

SELFWEIGHT Y -1

UNIT INCHES KIP

LOAD 2 IRC: SLS CLASS A LOADING N140: DISP Y -VE

LOAD 3 IRC: SLS CLASS A LOADING N1: REACT FY +VE

ELEMENT LOAD

175 PR GY -0.0652673 18.663 1.828 10.789 -4.077

174 PR GY -0.0652673 10.789 1.828 2.915 -4.077

196 PR GY -0.0652673 18.663 5.765 10.789 -0.14

195 PR GY -0.0652673 10.789 5.765 2.915 -0.14

263 PR GY -0.0661375 24.568 6.562 4.883 5.765

270 PR GY -0.0661375 24.568 2.484 4.883 -6.562

262 PR GY -0.0661375 16.694 6.562 -2.991 5.765

269 PR GY -0.0661375 16.694 2.484 -2.991 -6.562

294 PR GY -0.0661375 24.568 6.421 4.883 -3.421

292 PR GY -0.0661375 16.694 6.421 -2.991 -3.421

LOAD 4 IRC: SLS CLASS A LOADING N7: REACT FY +VE

LOAD 5 IRC: SLS CLASS A LOADING N8: REACT FY +VE

ELEMENT LOAD

145 PR GY -0.0652673 18.663 6.562 10.789 4.884

152 PR GY -0.0652673 18.663 -2.334 10.789 -6.562

144 PR GY -0.0652673 10.789 6.562 2.915 4.884

151 PR GY -0.0652673 10.789 -2.334 2.915 -6.562

175 PR GY -0.0652673 18.663 1.603 10.789 -4.302

174 PR GY -0.0652673 10.789 1.603 2.915 -4.302

240 PR GY -0.0661375 24.568 6.562 4.883 1.603

250 PR GY -0.0661375 24.568 -1.678 4.883 -6.562

239 PR GY -0.0661375 16.694 6.562 -2.991 1.603

248 PR GY -0.0661375 16.694 -1.678 -2.991 -6.562

263 PR GY -0.0661375 24.568 6.562 4.883 5.54

270 PR GY -0.0661375 24.568 2.259 4.883 -6.562

262 PR GY -0.0661375 16.694 6.562 -2.991 5.54

269 PR GY -0.0661375 16.694 2.259 -2.991 -6.562

LOAD 6 IRC: SLS CLASS A LOADING N14: REACT FY +VE

ELEMENT LOAD

145 PR GY -0.0652673 8.899 6.562 1.025 4.884

152 PR GY -0.0652673 8.899 -2.334 1.025 -6.562

144 PR GY -0.0652673 1.025 6.562 -6.849 4.884

151 PR GY -0.0652673 1.025 -2.334 -6.849 -6.562

175 PR GY -0.0652673 8.899 1.603 1.025 -4.302

174 PR GY -0.0652673 1.025 1.603 -6.849 -4.302

240 PR GY -0.0661375 14.804 6.562 -4.881 1.603

250 PR GY -0.0661375 14.804 -1.678 -4.881 -6.562

239 PR GY -0.0661375 6.931 6.562 -12.754 1.603

248 PR GY -0.0661375 6.931 -1.678 -12.754 -6.562

263 PR GY -0.0661375 14.804 6.562 -4.881 5.54

270 PR GY -0.0661375 14.804 2.259 -4.881 -6.562

262 PR GY -0.0661375 6.931 6.562 -12.754 5.54

269 PR GY -0.0661375 6.931 2.259 -12.754 -6.562

LOAD 7 IRC: SLS CLASS A LOADING N15: REACT FY +VE

ELEMENT LOAD

101 PR GY -0.0652673 18.663 2.466 10.789 -3.439

100 PR GY -0.0652673 10.789 2.466 2.915 -3.439

124 PR GY -0.0652673 18.663 6.403 10.789 0.498

123 PR GY -0.0652673 10.789 6.403 2.915 0.498

189 PR GY -0.0661375 24.569 6.562 4.884 6.403

196 PR GY -0.0661375 24.569 3.122 4.884 -6.562

188 PR GY -0.0661375 16.695 6.562 -2.99 6.403

195 PR GY -0.0661375 16.695 3.122 -2.99 -6.562

219 PR GY -0.0661375 24.569 6.562 4.884 -2.784

226 PR GY -0.0661375 24.569 -6.065 4.884 -6.562

218 PR GY -0.0661375 16.695 6.562 -2.99 -2.784

225 PR GY -0.0661375 16.695 -6.065 -2.99 -6.562

LOAD 8 IRC: SLS CLASS A LOADING N21: REACT FY +VE

ELEMENT LOAD

101 PR GY -0.0652673 8.899 2.466 1.025 -3.439

100 PR GY -0.0652673 1.026 2.466 -6.848 -3.439

124 PR GY -0.0652673 8.899 6.403 1.025 0.498

123 PR GY -0.0652673 1.026 6.403 -6.848 0.498

189 PR GY -0.0661375 14.805 6.562 -4.88 6.403

196 PR GY -0.0661375 14.805 3.122 -4.88 -6.562

188 PR GY -0.0661375 6.931 6.562 -12.754 6.403

195 PR GY -0.0661375 6.931 3.122 -12.754 -6.562

219 PR GY -0.0661375 14.805 6.562 -4.88 -2.784

226 PR GY -0.0661375 14.805 -6.065 -4.88 -6.562

218 PR GY -0.0661375 6.931 6.562 -12.754 -2.784

225 PR GY -0.0661375 6.931 -6.065 -12.754 -6.562

LOAD 9 IRC: SLS CLASS A LOADING N22: REACT FY +VE

ELEMENT LOAD

270 PR GY -0.0652673 18.662 1.528 10.788 -4.378

269 PR GY -0.0652673 10.788 1.528 2.914 -4.378

240 PR GY -0.0652673 18.662 6.562 10.788 4.809

250 PR GY -0.0652673 18.662 -2.409 10.788 -6.562

239 PR GY -0.0652673 10.788 6.562 2.914 4.809

248 PR GY -0.0652673 10.788 -2.409 2.914 -6.562

175 PR GY -0.0661375 24.567 4.809 4.882 -5.033

174 PR GY -0.0661375 16.694 4.809 -2.991 -5.033

145 PR GY -0.0661375 24.567 6.562 4.882 4.153

152 PR GY -0.0661375 24.567 0.872 4.882 -6.562

144 PR GY -0.0661375 16.694 6.562 -2.991 4.153

151 PR GY -0.0661375 16.694 0.872 -2.991 -6.562

LOAD 10 IRC: SLS CLASS A LOADING N28: REACT FY +VE

ELEMENT LOAD

270 PR GY -0.0652673 8.898 1.528 1.024 -4.378

269 PR GY -0.0652673 1.024 1.528 -6.85 -4.378

240 PR GY -0.0652673 8.898 6.562 1.024 4.809

250 PR GY -0.0652673 8.898 -2.409 1.024 -6.562

239 PR GY -0.0652673 1.024 6.562 -6.85 4.809

248 PR GY -0.0652673 1.024 -2.409 -6.85 -6.562

175 PR GY -0.0661375 14.804 4.809 -4.881 -5.033

174 PR GY -0.0661375 6.93 4.809 -12.755 -5.033

145 PR GY -0.0661375 14.804 6.562 -4.881 4.153

152 PR GY -0.0661375 14.804 0.872 -4.881 -6.562

144 PR GY -0.0661375 6.93 6.562 -12.755 4.153

151 PR GY -0.0661375 6.93 0.872 -12.755 -6.562

LOAD 11 IRC: SLS CLASS A LOADING N29: REACT FY +VE

ELEMENT LOAD

219 PR GY -0.0652673 18.662 6.327 10.788 0.422

218 PR GY -0.0652673 10.788 6.327 2.914 0.422

196 PR GY -0.0652673 18.662 2.39 10.788 -3.515

195 PR GY -0.0652673 10.788 2.39 2.914 -3.515

124 PR GY -0.0661375 24.568 6.562 4.883 -0.234

131 PR GY -0.0661375 24.568 -3.515 4.883 -6.562

123 PR GY -0.0661375 16.694 6.562 -2.991 -0.234

130 PR GY -0.0661375 16.694 -3.515 -2.991 -6.562

101 PR GY -0.0661375 24.568 5.672 4.883 -4.171

100 PR GY -0.0661375 16.694 5.672 -2.991 -4.171

LOAD 12 IRC: SLS CLASS A LOADING N35: REACT FY +VE

ELEMENT LOAD

219 PR GY -0.0652673 8.899 6.327 1.025 0.422

218 PR GY -0.0652673 1.025 6.327 -6.849 0.422

196 PR GY -0.0652673 8.899 2.39 1.025 -3.515

195 PR GY -0.0652673 1.025 2.39 -6.849 -3.515

124 PR GY -0.0661375 14.804 6.562 -4.881 -0.234

131 PR GY -0.0661375 14.804 -3.515 -4.881 -6.562

123 PR GY -0.0661375 6.93 6.562 -12.755 -0.234

130 PR GY -0.0661375 6.93 -3.515 -12.755 -6.562

101 PR GY -0.0661375 14.804 5.672 -4.881 -4.171

100 PR GY -0.0661375 6.93 5.672 -12.755 -4.171

LOAD 13 IRC: SLS CLASS A LOADING N36: REACT FY +VE

LOAD 14 IRC: SLS CLASS A LOADING N42: REACT FY +VE

LOAD COMB 15 COMBINATION LOAD CASE 15

1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 6 1.0 7 1.0 8 1.0 9 1.0 10 1.0 11 1.0 12 1.0 –

13 1.0 14 1.0

UNIT METER KN

PERFORM ANALYSIS PRINT ALL

UNIT INCHES KIP

PERFORM ANALYSIS PRINT ALL

START CONCRETE DESIGN

CODE INDIAN

DESIGN BEAM 2 TO 5 8 TO 12 15 TO 18 21 TO 25 28 TO 31 34 TO 38 41 TO 44 47 –

48 TO 51 54 TO 57 60 TO 64 67 TO 70 72 73 75 77 79 81 83 88 90 95 97 102 104 –

109 111 113 115 117 120 125 127 132 134 139 141 146 148 153 155 157 159 161 –

164 169 171 176 178 183 185 190 192 197 199 201 203 205 208 213 215 220 222 –

227 229 234 236 241 243 245 247 249 252 257 259 264 266 271 273 278 280 285 –

287 289 291 293

DESIGN COLUMN 1 6 14 19 27 32 40 45 53 58 66 71

DESIGN ELEMENT 74 76 78 80 82 84 TO 87 89 91 TO 94 96 98 TO 101 103 –

105 TO 108 110 112 114 116 118 119 121 TO 124 126 128 TO 131 133 135 TO 138 –

140 142 TO 145 147 149 TO 152 154 156 158 160 162 163 165 TO 168 170 172 –

173 TO 175 177 179 TO 182 184 186 TO 189 191 193 TO 196 198 200 202 204 206 –

207 209 TO 212 214 216 TO 219 221 223 TO 226 228 230 TO 233 235 237 TO 240 -242 244 246 248 250 251 253 TO 256 258 260 TO 263 265 267 TO 270 272 274 -275 TO 277 279 281 TO 284 286 288 290 292 294 295

Advertisements

CONCRETE TAKEEND

CONCRETE DESIGN

FINISH

3.2 STADD PRO OUTPUT

FRAME STRUCTURE
frame-structure

BENDING MOMENT DIAGRAM
bending-moment-diagram

BEAM STRESS
beam-stress

REACTION
reaction

COMBINATION LOAD
combination-load

BEAM DESIGN SHEAR BENDING
beam-design-shear-bending

BEAM DESIGN DEFLECTION
beam-design-deflection

BEAM DESIGN
beam-design

B E A M N O. 35 D E S I G N R E S U L T S

M30 Fe415 (Main) Fe415 (Sec.)

LENGTH: 2000.0 mm SIZE: 530.0 mm X 530.0 mm COVER: 25.0 mm

B E A M  N O.      35   D E S I G N  R E S U L T S

COLUMN DESIGN SHEAR BENDING
column-design-shear-bending

COLUMN DESIGN DEFLECTION
column-design-deflection

COLUMN DESIGN
column-design

COLUMN DESIGN RESULTS
column-design-results

CHAPTER – 4
4. STRUCTURAL DESIGN

4.1 DESIGN OF DECK SLAB
4.1.1 GIVEN DATA
Clear span=10 m,
Bearing for the beam=0.60 cm
Number of lanes =two,
Width of safety kerbs =60cm
Loading =IRC class-A,
Wearing coat =8cm(average)
Materials available,
Concrete M150 grade ,steel grade-1
4.1.2 Relevant codes
IRC standard specifications and code of practice for road bridge sections (i) (iv)
4.1.3 Width of Roadway
Roadway=3.8+3+1.2=8 m

4.1.4 Impact Factor
formula-1

formula-2

formula-3

formula-4

formula-5

formula-6

Result:
Size of footing :1.2 m x 1.2 m
Reinforcement :18nos of 32 mm# bars in shorter direction
18nos of 32 mm# bars in longer direction

CHAPTER – 5

CONCLUSION

• This project concludes the planning, analysis and design of fly over structures.
• This structure reduces the traffic control and enhances the safe driving.
• The structure is designed as per IRC class AA loading.
• This project helps to improve the urbanization of rural areas
• Also facilitate the connection of various system of road such as village road, State highway, National highway etc.,

REFERENCES
• K.S.RAKSHIT, Design and Construction of Highway Bridges New Central Book Agency, Kolkata.
• JAYARAM,T.R. JAGADEESH AND M.A. Design of Bridge Structures Prentice Hall of India Pvt.Ltd., New Delhi
• D.JOHNSON VICTOR, Essentials of Bridge Engineering Oxford and IBH Publishing Co. Pvt. Ltd.
• C.S. PAPACOSTAS, Fundamentals of Transportation Engineering Prentice Hall of India Pvt Ltd, New Delhi.
• IRC 21-2000 – STANDARD SPECIFICATIONS AND CODE OF PRACTICE FOR ROAD BRIDGES SECTION II
• IRC 5-2000 – STANDARD SPECIFICATIONS AND CODE OF PRACTICE FOR ROAD BRIDGES SECTION I
• IRC 6-2000 – STANDARD SPECIFICATIONS AND CODE OF PRACTICE FOR ROAD BRIDGES SECTION II
• IS 456-2000 – PLAIN AND REINFORCED CONCRETE – CODE OF PRACTICE

LIST OF FIGURES
FIG NO 1 PROPOSED FLY OVER
FIG NO 2 REINFORCEMENT DETAILS FOR DECK SLAB
FIG NO 3 REINFORCEMENT DETAILS FOR T-BEAM
FIG NO 4 REINFORCEMENT DETAILS FOR SINGLY REINFORCED BEAM
FIG NO 5 REINFORCEMENT DETAILS FOR COLUMN

Advertisements

We at engineeringcivil.com are thankful to Er. PURUSOTHAMAN.S for submitting this very useful paper to us.

More Entries :
Comments
  • Anugraha Rajendran September 16, 2017 at 2:05 am

    can i get the auto CAD plan of this project ?

  • Post a comment